Pre-class Warm-up!!!

How many methods have we learned so far to solve differential equations?
a. 0
b. 1
c. 2
d. 3
e. ≥ 4

Section 1.6: Substitution methods and exact equations

We learn to recognize several kinds of differential equation:

- homogeneous equations
- Bernoulli equations
- Equations where some special substitution works
- Higher order equations where the order can be reduced
- Exact equations

The first 4 of these can be dealt with by introducing a new variable v dependent on both y and $x: v=g(x, y)$, where we can also write $y=h(x, v)$. We then get $d y / d x$ in terms of $\mathrm{dv} / \mathrm{dx}$.

Exact equations are different!

Homogeneous equations
Page 74 question 8 (like page 60 example 2)
Find the general solution to

$$
\begin{aligned}
& 2 x y+x^{\wedge} 2 y^{\prime}=y^{\wedge} 2 \\
& x^{2} \frac{d y}{d x}+2 x y=y^{2}
\end{aligned}
$$

A homogeneous equation is one of the form

$$
\frac{d y}{d x}=f\left(\frac{y}{x}\right)
$$

In this case: divide both sides by x^{2}

$$
\begin{aligned}
& \frac{d y}{d x}+2 \frac{x y}{x^{2}}=\frac{y^{2}}{x^{2}} \\
& \frac{d y}{d x}=\left(\frac{y}{x}\right)^{2}-2\left(\frac{y}{x}\right)
\end{aligned}
$$

Method: Put $v=\frac{y}{x}$
so $y=v x, \frac{d y}{d x}=\frac{d(v x)}{d x}$

$$
=v+x \frac{d v}{d x}
$$

Substitute.

$$
\begin{aligned}
v+x \frac{d v}{d x} & =v^{2}-2 v \\
x \frac{d v}{d x} & =v^{2}-3 v \\
\frac{d v}{d x} & =\frac{v^{2}-3 v}{x}
\end{aligned}
$$

We can solve this by:

- integrating $y^{\prime}=$ function of x
- separating the variables
- as a first order linear equation

Page 74 question 8 (like page 60 example 2)
Find the general solution to

$$
2 x y+x^{\wedge} 2 y^{\prime}=y^{\wedge} 2
$$

Summary: $v=\frac{y}{x} \quad x \frac{d v}{d x}=v^{2}-3 v$
Solve this by separating the variables.

$$
\int \frac{d v}{v^{2}-3 v}=\int \frac{d x}{x}
$$

Partial fractions: (calculation rot shoer)

$$
\begin{aligned}
& \int \frac{1}{3}\left(\frac{1}{v-3}-\frac{1}{v}\right) d v=\int \frac{d x}{x} \\
& \frac{1}{3}(\ln |v-3|-\ln |v|)=\ln x+C
\end{aligned}
$$

$$
\begin{aligned}
& \ln \left(\frac{v-3}{v}\right)^{\frac{1}{3}}=\ln x+C \\
& \left(\frac{v-3}{v}\right)^{\frac{1}{3}}=e^{\ln x+C}=B x \text { where } \\
& B=e^{C} \\
& \frac{v-3}{v}=B^{3} x^{3} \\
& v-3=B^{3} x^{3} v \\
& v\left(1-B^{3} x^{3}\right)=3 \\
& v=\frac{3}{1-B^{3} x^{3}} \\
& y=\frac{3 x}{1-B^{3} x^{3}}
\end{aligned}
$$

Bernoulli equations
1.6 question 23.

Find the general solution to

$$
x y^{\prime}+6 y=3 x y^{\wedge}(4 / 3)
$$

$x d y \quad 4 / 3$ is almost a $\frac{d y}{d x}+6 y=3 x y$ first order linear
equation.
Form of a Bernoulli equation:

$$
y^{\prime}+P(x) y=Q(x)\left(y^{n}\right)^{\text {extra in gradient }}
$$

$$
y^{\prime}+P(x) y=Q(x) y^{n}
$$

Method: Substitute $\quad V=y^{1-n}$
In this case: $n=\frac{4}{3}$, put $v=y^{1-\frac{4}{3}}=y^{-1 / 3}$

$$
\begin{aligned}
y= & v^{-3}, \frac{d y}{d x}=\frac{d v^{-3}}{d x}=\frac{d v^{-3}}{d v} \cdot \frac{d v}{d x} \\
& =-3 v^{-4} \frac{d v}{d x}
\end{aligned}
$$

Substitute: $x\left(-3 r^{-4}\right) \frac{d r}{d x}+6 r^{-3}=3 x r^{-4}$
Multiply $b y \frac{-v^{4}}{3 x}: \frac{d v}{d y}-\frac{2 v}{x}=-1$
$\frac{d v}{d x}-\frac{2 v}{x}=-1$ is first order linear. Integrating factor: $e^{\int \frac{-2}{x} d x}=e^{-2 \ln x}$

$$
=e^{\ln x^{-2}}=x^{-2}
$$

$$
\frac{1}{x^{2}} \frac{d v}{d x}-\frac{2 v}{x^{3}}=\frac{-1}{x^{2}}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{v}{x^{2}}\right)=-\frac{1}{x^{2}}, \quad \frac{v}{x^{2}}=\frac{1}{x}+C \\
& v=x+C x^{2}=y^{-\frac{1}{3}} \\
& y=\left(x+C x^{2}\right)^{-3}
\end{aligned}
$$

Special substitutions
Questions from Section 1.6: solve the equations
16. $y^{\prime}=\sqrt{ }(x+y+1)$
28. $x e^{\wedge} y y^{\prime}=2\left(e^{\wedge} y+x^{\wedge} 3 e^{\wedge}\{2 x\}\right)$

Solution to 16 . We are going to make a substitution $v=$ something. What should it be?
a. $v=e^{\text {something }}$
b. $v=y^{\text {something }}$
c. $v=\frac{y}{x}$
d. $v=x+y+1$
e. $v=\sqrt{x+y+1}$

$$
\begin{aligned}
& x+y+1=v^{2}, y=v^{2}-x-1 \\
& \frac{d y}{d x}=2 v \frac{d v}{d x} \sim 1 . \quad \text { Substitute: } \\
& 2 v \frac{d v}{d x}-1 \approx v \\
& 2 v \frac{d v}{d x}=v+1
\end{aligned}
$$

$\frac{d v}{d x}=\frac{v+1}{2 v}$ Separate the variables.

$$
\int \frac{2 v d v}{v+1}=\int d x
$$

$$
\int \frac{2 v+2-2}{v+1} d v=\int\left(2-\frac{2}{v+1}\right) d v=2 v-2 \ln (v+1)
$$

$$
=\int d x=x+C
$$

$$
2 \sqrt{x+y+1}-2 \ln (1+\sqrt{x+y+1})=x+C
$$ gives a solution implicitly.

Questions from Section 1.6: solve the equation
28. $x e^{y} y^{\prime}=2\left(e^{y}+x^{3} e^{2 x}\right)$

What substitution should we make?
a. $v=e^{y}+x^{3} e^{2 x}$
b. $v=e^{y}$
c. $v=x e^{y}$
d. $v=x^{3} e^{2 x}$
e. $v=$

Try $v=e^{y} \quad y=\ln v$

$$
\frac{d y}{d x}=\frac{1}{v} \frac{d v}{d x} \quad \text { Substitute. }
$$

$$
x v \frac{1}{v} \frac{d v}{d x}=2\left(v+x^{3} e^{2 x}\right)
$$

Divide by x :

$$
\frac{d v}{d x}=2\left(\frac{v}{x}+x^{2} e^{2 x}\right)
$$

$$
\frac{d v}{d x}-\frac{2 v}{x}=2 x^{2} e^{2 x}
$$

We can solve this
a. by separating the variables
b. as a first order linear equation
c. by making another substitution

Reducing the order of a differential equation
Section 1.6 question 44 . Solve $y y^{\prime \prime}=\left(y^{\prime}\right)^{\wedge} 2$
Solution: it's significant that there is no term in x in the equation.
Substitute: $\quad v=\frac{d y}{d x}$

$$
y^{\prime \prime}=\frac{d v}{d x}=\frac{d v}{d y} \frac{d y}{d x}=v \frac{d v}{d y}
$$

Substitute:

$$
y v \frac{d v}{d y}=v^{2}
$$

Divide by yo

$$
\frac{d v}{d y}-\frac{1}{y} v=0
$$

IF. $e^{\int-\frac{1}{y} d y}=e^{-\ln y}=\frac{1}{y}$

$$
\begin{aligned}
& \frac{1}{y} \frac{d v}{d y}-\frac{1}{y^{2}} v=\frac{d}{d y}\left(\frac{v}{y}\right)=0 \\
& \frac{v}{y}=C, \quad v=C_{y}=\frac{d y}{d x}
\end{aligned}
$$

- We can solve this
a. by separating the variables
b. as a first order linear equation
c. by making another substitution
$y=B e^{C x}$ with two constants: B, C

Section 1.6 question 46: Solve $x y^{\prime \prime}+y^{\prime}=4 x$
This time it's significant there is no term in y.
Put $v=\frac{d y}{d x}=y^{\prime}$

$$
y^{\prime \prime}=\frac{d r}{d x}
$$

Substitute: $x \frac{d v}{d x}+v=4 x$

$$
\frac{d V}{d x}+\frac{1}{x} v=4
$$

We can solve this
a. by separating the variables
b. as a first order linear equation
c. by making another substitution

Then solve the equation for v that antes.

Pre-class Warm-up!!!

How would you solve the following equation?

$$
2 x y+x \wedge 2 y^{\prime}=y^{\wedge} 2
$$

a. by integrating $y^{\prime}=$ function of x
b. separate the variables
c. as a first order linear equation $v=\frac{y}{x}$
d. as a homogeneous equation $y^{\prime}+2 r=v^{2}$
$\sqrt{ }$ e. as a Bernoulli equation $y^{\prime}+\frac{2}{x} y=\frac{y^{2}}{x^{2}}$
f. make a special substitution
g. reduce the order

$$
\begin{aligned}
& \text { What about } x y \wedge 2+3 y \wedge 2-x \wedge 2 y^{\prime}=0 \\
& x y^{\prime}+2 y=6 x \wedge 2 \sqrt{ } y \\
& y^{\prime}=\sqrt{ }(x+y)
\end{aligned}
$$

Exact equations
Question: Solve $2 x y \frac{d y}{d x}+y^{2}=10 x$
Solution: This equation is

$$
\begin{aligned}
& \frac{d}{d x}\left(x y^{2}\right)=10 x \\
& x y^{2}=\int 10 x d x=5 x^{2}+C \\
& y^{2}=5 x+\frac{C}{x} \\
& y=\sqrt{5 x+\frac{c}{x}}
\end{aligned}
$$

How do we find a function $f(x, y)$ so that

$$
\frac{d}{d x} f=2 x y \frac{d y}{d x}+y^{2} ?
$$

Notice that $\frac{d f}{d x}=\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial x}$
We solve $f_{y}=2 x y \quad f_{x}=y^{2}$
Thus $f=x y^{2}+g(x) \quad f=x y^{2}+h(y)$
$f=x y^{2}$ works.
$x y^{2}$ is a potential function for he vector field

$$
\left[\begin{array}{c}
y^{2} \\
2 x y
\end{array}\right]^{\prime}=\nabla\left(x y^{2}\right)
$$

It can look better to write the equation in differential form:

$$
\begin{aligned}
& 2 x y d y+y^{\wedge} 2 d x=10 d x \\
& d\left(x y^{\wedge} 2\right)=10 d x
\end{aligned}
$$

$$
(2 x \wedge 2 y+1) d y / d x+2 x y \wedge 2=2 x
$$

The left side is $\frac{d f}{d x}$ where f is
a. $x^{2} y+y$
b. $x^{2} y^{2}+1$
$\int c . \quad x^{2} y^{2}+y$
$d x y^{2}+2 x^{2} y$
e. None of the above.

